Skew braces and solutions of the YBE

Ilaria Colazzo

May 25, 2021

Hopf Algebras and Galois Module Theory

Overview

Yang-Baxter equation

Skew braces

A construction technique for skew braces: The Ideal Extension by a trivial brace

Skew braces with non-trivial annihilator

Skew braces and regular subgroups of the Holomorph

The Yang-Baxter equation

The Yang-Baxter equation is a fundamental tool in many fields such as:

- statistical mechanics
- quantum group theory
- low-dimensional topology
- knot theory
- quantum computation

The Yang-Baxter equation

- k - a field
- V - a vector sapace over k

A solution (of the YBE) is a linear map $R: V \otimes V \rightarrow V \otimes V$ such that

$$
(R \otimes \mathrm{id})(\mathrm{id} \otimes R)(R \otimes \mathrm{id})=(\mathrm{id} \otimes R)(R \otimes \mathrm{id})(\mathrm{id} \otimes R)
$$

Set-theoretic solutions of the YBE

Problem (Drinfeld,'92)

Study set-theoretic solutions of the YBE.

A set-theoretic solution (of the YBE) is a pair (X, r) where X is a non-empty set and $r: X \times X \rightarrow X \times X$ is a map such that

$$
(r \times \mathrm{id})(\mathrm{id} \times r)(r \times \mathrm{id})=(\mathrm{id} \times r)(r \times \mathrm{id})(\mathrm{id} \times r)
$$

Reidemeister move of type III
(X, r) - a set-theoretic solution of the YBE Write

$$
r(x, y)=\left(\lambda_{x}(y), \rho_{y}(x)\right)
$$

where $\lambda_{x}, \rho_{x}: X \rightarrow X$.
$\Rightarrow r$ is left (resp. right) non-degenerate if $\lambda_{x}\left(\right.$ resp. $\left.\rho_{X}\right)$ is bijective, for any $x \in X$.

- non-degenerate if it is both left and right non-degenerate \Rightarrow involutive if $r^{2}(x, y)=(x, y)$.
(X, r) - a set-theoretic solution of the YBE
Write

$$
r(x, y)=\left(\lambda_{x}(y), \rho_{y}(x)\right)
$$

where $\lambda_{x}, \rho_{x}: X \rightarrow X$.

- r is left (resp. right) non-degenerate if λ_{X} (resp. ρ_{X}) is bijective, for any $x \in X$.
$>$ non-degenerate if it is both left and right non-degenerate
- involutive if $r^{2}(x, y)=(x, y)$.
(X, r) - a set-theoretic solution of the YBE
Write

$$
r(x, y)=\left(\lambda_{x}(y), \rho_{y}(x)\right)
$$

where $\lambda_{x}, \rho_{x}: X \rightarrow X$.

- r is left (resp. right) non-degenerate if λ_{X} (resp. ρ_{X}) is bijective, for any $x \in X$.
$>$ non-degenerate if it is both left and right non-degenerate
- involutive if $r^{2}(x, y)=(x, y)$.
(X, r) - a set-theoretic solution of the YBE Write

$$
r(x, y)=\left(\lambda_{x}(y), \rho_{y}(x)\right)
$$

where $\lambda_{x}, \rho_{x}: X \rightarrow X$.

- r is left (resp. right) non-degenerate if λ_{x} (resp. ρ_{X}) is bijective, for any $x \in X$.
- non-degenerate if it is both left and right non-degenerate \Rightarrow involutive if $r^{2}(x, y)=(x, y)$.
(X, r) - a set-theoretic solution of the YBE Write

$$
r(x, y)=\left(\lambda_{x}(y), \rho_{y}(x)\right)
$$

where $\lambda_{x}, \rho_{x}: X \rightarrow X$.

- r is left (resp. right) non-degenerate if λ_{x} (resp. ρ_{X}) is bijective, for any $x \in X$.
- non-degenerate if it is both left and right non-degenerate
- involutive if $r^{2}(x, y)=(x, y)$.

Briefly, the state-of-the-art

- Involutive non-degenerate solutions
['99] Etingof, Schedler \& Soloviev
['99] Gateva-Ivanova \& Van den Bergh
['07] Rump
['14] Cedó, Jespers \& Okninski
- Bijective non-degenerate solutions

Briefly, the state-of-the-art

- Involutive non-degenerate solutions
['99] Etingof, Schedler \& Soloviev
['99] Gateva-Ivanova \& Van den Bergh (Ring and group theoretical tools)
['07] Rump
['14] Cedó, Jespers \& Okninski
- Bijective non-degenerate solutions

Briefly, the state-of-the-art

- Involutive non-degenerate solutions
['99] Etingof, Schedler \& Soloviev
['99] Gateva-Ivanova \& Van den Bergh
['07] Rump
['14] Cedó, Jespers \& Okninski
- Bijective non-degenerate solutions

Briefly, the state-of-the-art

- Involutive non-degenerate solutions
['99] Etingof, Schedler \& Soloviev
['99] Gateva-Ivanova \& Van den Bergh
['07] Rump
['14] Cedó, Jespers \& Okninski (Braces)
- Bijective non-degenerate solutions

Briefly, the state-of-the-art

- Involutive non-degenerate solutions
['99] Etingof, Schedler \& Soloviev
['99] Gateva-Ivanova \& Van den Bergh
['07] Rump
['14] Cedó, Jespers \& Okninski
- Bijective non-degenerate solutions
['00] Lu, Yan \& Zhu
['00] Soloviev
(Ring and group theoretical tools)
['17] Guarnienri \& Vendramin

Briefly, the state-of-the-art

- Involutive non-degenerate solutions
['99] Etingof, Schedler \& Soloviev
['99] Gateva-Ivanova \& Van den Bergh
['07] Rump
['14] Cedó, Jespers \& Okninski
- Bijective non-degenerate solutions
['00] Lu, Yan \& Zhu
['00] Soloviev
['17] Guarnienri \& Vendramin (Skew braces)

Briefly, the state-of-the-art

- Not necessarly bijective solutions
['17] Lebed (idempotent solutions)
['20] Cvetko-Vah \& Verwimp
[17] Catino, C. \& Stefanelli
['19] Jespers \& Van Antwerpen

Briefly, the state-of-the-art

- Not necessarly bijective solutions
['17] Lebed
\quad (idempotent solutions)
idempotent solutions allow a unified treatment of different algebraic structures (such as free monoids, free commutative monoids, factorizable monoids, and distributive lattices)
['20] Cvetko-Vah \& Verwimp
['17] Catino, C. \& Stefanelli
['19] Jespers \& Van Antwerpen
(semi-braces)

Briefly, the state-of-the-art

- Not necessarly bijective solutions
['17] Lebed
(idempotent solutions)
idempotent solutions allow a unified treatment of different
algebraic structures (such as free monoids, free commutative monoids, factorizable monoids, and distributive lattices)
['20] Cvetko-Vah \& Verwimp
(cubic solutions and skew lattices)
['17] Catino, C. \& Stefanelli
['19] Jespers \& Van Antwerpen
(semi-braces)

Briefly, the state-of-the-art

- Not necessarly bijective solutions
['17] Lebed
(idempotent solutions)
idempotent solutions allow a unified treatment of different
algebraic structures (such as free monoids, free commutative monoids, factorizable monoids, and distributive lattices)
['20] Cvetko-Vah \& Verwimp
(cubic solutions and skew lattices)
['17] Catino, C. \& Stefanelli
(left non-degenerate solutions and left cancellative semi-braces)
['19] Jespers \& Van Antwerpen (semi-braces)

Examples

- The flip map $r(x, y)=(y, x)$.
$\sigma, \tau: X \rightarrow X$ maps.

$$
r(x, y)=(\sigma(y), \tau(x)) \text { solution } \Longleftrightarrow \sigma \tau=\tau \sigma .
$$

r is non-degenerate if σ and ρ are bijective.

- X a group

$$
r(x, y)=\left(y, y^{-1} x y\right)
$$

is a solution.

- Generally

$$
\begin{aligned}
& X-\text { a set } \\
& \triangleleft-\text { binary operation of } X \\
& \qquad r(x, y)=(y, x \triangleleft y) \text { solution } \Longleftrightarrow \triangleleft \text { self-distributive }
\end{aligned}
$$

Examples

- The flip map $r(x, y)=(y, x)$.
- $\sigma, \tau: X \rightarrow X$ maps.

$$
r(x, y)=(\sigma(y), \tau(x)) \text { solution } \Longleftrightarrow \sigma \tau=\tau \sigma
$$

r is non-degenerate if σ and ρ are bijective.

$$
r(x, y)=\left(y, y^{-1} x y\right)
$$

is a solution.

- Generally
$X-$ a set
$\triangleleft-$ binary operation of X
$r(x, y)=(y, x \triangleleft y)$ solution $\Longleftrightarrow \triangleleft$ self-distributive

Examples

- The flip map $r(x, y)=(y, x)$.
- $\sigma, \tau: X \rightarrow X$ maps.

$$
r(x, y)=(\sigma(y), \tau(x)) \text { solution } \Longleftrightarrow \sigma \tau=\tau \sigma
$$

r is non-degenerate if σ and ρ are bijective.

- X a group

$$
r(x, y)=\left(y, y^{-1} x y\right)
$$

is a solution.

- Generally
$\triangleleft-$ binary operation of X

Examples

- The flip map $r(x, y)=(y, x)$.
- $\sigma, \tau: X \rightarrow X$ maps.

$$
r(x, y)=(\sigma(y), \tau(x)) \text { solution } \Longleftrightarrow \sigma \tau=\tau \sigma
$$

r is non-degenerate if σ and ρ are bijective.

- X a group

$$
r(x, y)=\left(y, y^{-1} x y\right)
$$

is a solution.

- Generally

$$
\begin{aligned}
& X-\text { a set } \\
& \triangleleft-\text { binary operation of } X
\end{aligned}
$$

$$
r(x, y)=(y, x \triangleleft y) \text { solution } \Longleftrightarrow \triangleleft \text { self-distributive }
$$

Examples

- The flip map $r(x, y)=(y, x)$.
- $\sigma, \tau: X \rightarrow X$ maps.

$$
r(x, y)=(\sigma(y), \tau(x)) \text { solution } \Longleftrightarrow \sigma \tau=\tau \sigma .
$$

r is non-degenerate if σ and ρ are bijective.

- X a group

$$
r(x, y)=\left(y, y^{-1} x y\right)
$$

is a solution.

- Generally

$$
\begin{aligned}
& X-\text { a set } \\
& \triangleleft-\text { binary operation of } X \\
& r(x, y)=(y, x \triangleleft y) \text { solution } \Longleftrightarrow \quad \begin{array}{l}
\quad \\
\\
(x \triangleleft y) \triangleleft z=(x \triangleleft z) \triangleleft(y \triangleleft z)
\end{array}
\end{aligned}
$$

Radical rings

- $(R,+, \cdot)$ - a ring
- Define $x \circ y=x+x y+y$.
- (R, \circ) is a monoid with neutral element 0 .
- R is a radical ring if (R, \circ) is a group.

Theorem (Rump, '08)

- R - a radical ring.
- Then $r: R \times R \rightarrow R \times R$,

$$
r(a, b)=\left(-a+a \circ b,\left(a^{-}+b\right)^{-} \circ b\right)
$$

is an involutive non-degenerate solution.
Here, x^{-}denotes the inverse of x in (R, \circ).

Do we need a radical ring to produce a set-theoretical solution as in Rump construction?

Skew braces

A skew brace is a triple $(B,+, \circ)$ where

- $(B,+)$ and (B, \circ) are groups
- for any $a, b, c \in B$ it holds

$$
a \circ(b+c)=a \circ b-a+a \circ c .
$$

A skew brace with $(B,+)$ abelian is called a brace (Rump, '07).

Skew braces and solutions

Theorem (Guarnieri \& Vendramin, '17)

- B a skew brace.
- Then $r: B \times B \rightarrow B \times B$,

$$
r(a, b)=\left(-a+a \circ b,\left(a^{-}+b\right)^{-} \circ b\right)
$$

is an bijective non-degenerate solution.

$$
r \text { is involutiver } r^{2}=\text { id } \Longleftrightarrow(B,+) \text { is abelian. }
$$

Examples

- Radical rings

```
- Trivial skew braces
    (G,+) - a group
    Define }a\circb=a+
    Then ( }G,+,0)\mathrm{ is a skew brace.
Let (G,+) be a group with an exact factorization G}=A+B\mathrm{ .
    A,B subgroups of }
    A\capB={0}
    Define }x\circy=a+y+b\mathrm{ ,
    where }x=a+b,a\inA,b\inB
```


Examples

- Radical rings
- Trivial skew braces
($G,+$) - a group
Define $a \circ b=a+b$.
Then $(G,+, \circ)$ is a skew brace.

Define $x \circ y=a+y+b$,
where $x=a+b, a \in A, b \in B$.

Examples

- Radical rings
- Trivial skew braces
($G,+$) - a group
Define $a \circ b=a+b$.
Then $(G,+, \circ)$ is a skew brace.
- Let $(G,+)$ be a group with an exact factorization $G=A+B$.
A, B subgroups of G
$A \cap B=\{0\}$
Define $x \circ y=a+y+b$, where $x=a+b, a \in A, b \in B$.

Solutions \& skew braces

Solutions \& skew braces

Theorem

- All finite involutive non-degenerate solutions can be described from the description of all finite braces. (Bachiller, Cedó, Jespers, '16)
- All finite bijective non-degenerate solution can be described from the description of all finite skew braces. (Bachiller, '18)

Solutions \& skew braces

Theorem

- All finite involutive non-degenerate solutions can be described from the description of all finite braces. (Bachiller, Cedó, Jespers, '16)
- All finite bijective non-degenerate solution can be described from the description of all finite skew braces. (Bachiller, '18)

The permutation group

- (X, r) - bijective non-degenerate solution
- Write $r(x, y)=\left(\lambda_{x}(y), \rho_{y}(x)\right)$
- Define the permutation group

$$
\mathcal{G}(X, r)=\operatorname{gr}\left(\left(\lambda_{x}, \rho_{x}^{-1}\right): x \in X\right) \subseteq \operatorname{Sym}(X) \times \operatorname{Sym}(X)
$$

Then the permutation group is a skew brace.
În addition
$\begin{aligned}- & \text { If }(X, r),(Y, s) \text { are isomorphic solution } \mathcal{G}(X, r) \cong \mathcal{G}(Y, s) \\ > & \text { If } B \text { is a skew brace, then it is possible to reconstruct all } \\ & \text { bijective non-degenerate solution }(X, r) \text { such that } \mathcal{G}(X, r) \cong B .\end{aligned}$

The permutation group

- (X, r) - bijective non-degenerate solution
- Write $r(x, y)=\left(\lambda_{x}(y), \rho_{y}(x)\right)$
- Define the permutation group

$$
\mathcal{G}(X, r)=\operatorname{gr}\left(\left(\lambda_{x}, \rho_{x}^{-1}\right): x \in X\right) \subseteq \operatorname{Sym}(X) \times \operatorname{Sym}(X)
$$

Then the permutation group is a skew brace.
In addition

- If $(X, r),(Y, s)$ are isomorphic solution $\mathcal{G}(X, r) \cong \mathcal{G}(Y, s)$
- If B is a skew brace, then it is possible to reconstruct all bijective non-degenerate solution (X, r) such that $\mathcal{G}(X, r) \cong B$.

The permutation group

- (X, r) - bijective non-degenerate solution
- Write $r(x, y)=\left(\lambda_{x}(y), \rho_{y}(x)\right)$
- Define the permutation group

$$
\mathcal{G}(X, r)=\operatorname{gr}\left(\left(\lambda_{x}, \rho_{x}^{-1}\right): x \in X\right) \subseteq \operatorname{Sym}(X) \times \operatorname{Sym}(X)
$$

Then the permutation group is a skew brace.
In addition

- If $(X, r),(Y, s)$ are isomorphic solution $\mathcal{G}(X, r) \cong \mathcal{G}(Y, s)$

bijective non-degenerate solution (X, r) such that $\mathcal{G}(X, r) \cong B$.

The permutation group

- (X, r) - bijective non-degenerate solution
- Write $r(x, y)=\left(\lambda_{x}(y), \rho_{y}(x)\right)$
- Define the permutation group

$$
\mathcal{G}(X, r)=\operatorname{gr}\left(\left(\lambda_{x}, \rho_{x}^{-1}\right): x \in X\right) \subseteq \operatorname{Sym}(X) \times \operatorname{Sym}(X)
$$

Then the permutation group is a skew brace.
In addition

- If $(X, r),(Y, s)$ are isomorphic solution $\mathcal{G}(X, r) \cong \mathcal{G}(Y, s)$
- If B is a skew brace, then it is possible to reconstruct all bijective non-degenerate solution (X, r) such that $\mathcal{G}(X, r) \cong B$.

The idea: Extension of groups

New methods to construct skew braces.

An idea: Extension of groups

- H.I - groups
\Rightarrow determine all groups B such that
l is a normal subgroup of B B / I is isomorphic to H

The idea: Extension of groups

New methods to construct skew braces.

An idea: Extension of groups

- H,I-groups
- determine all groups B such that
I is a normal subgroup of B
B / I is isomorphic to H

Normal subgroups \longrightarrow Ideals

- B - skew brace
- $I \subseteq B$

I is an ideal of B if

- I is a normal subgroup of $(B,+)$ and $(B, 0)$
- $\lambda_{a}(I) \subseteq I$
where for any $a \in A, \lambda_{a}: B \rightarrow B, b \mapsto-a+a \circ b$.

Normal subgroups \longrightarrow Ideals

- B - skew brace
- $I \subseteq B$
I is an ideal of B if
- I is a normal subgroup of $(B,+)$ and (B, \circ)
- $\lambda_{a}(I) \subseteq I$ where for any $a \in A, \lambda_{a}: B \rightarrow B, b \mapsto-a+a \circ b$.

The extension

The extensions method:

- I, H skew braces
- determine all possible skew braces B such that
- I is an ideal of B
- $B / I \cong H$

The extension problem for skew brace is still open.
We give a construction technique when / is a trivial brace, i.e.

- $(I,+)$ is abelian
$\Rightarrow a+b=a \circ b$

The extension

The extensions method:

- I, H skew braces
- determine all possible skew braces B such that
- I is an ideal of B
- $B / I \cong H$

The extension problem for skew brace is still open.
We give a construction technique when I is a trivial brace, i.e. - $(I,+)$ is abelian

The extension

The extensions method:

- I, H skew braces
- determine all possible skew braces B such that
- I is an ideal of B
- $B / I \cong H$

The extension problem for skew brace is still open.
We give a construction technique when I is a trivial brace, i.e.

- $(I,+)$ is abelian
- $a+b=a \circ b$

2-cocycles

- (B, \circ) - a group with identity 0
- $(I,+)$ - abelian group
- $\sigma: B \rightarrow$ Aut $(I,+)$ - a right action
$\theta: B \times B \rightarrow I$ is a 2-cocycle form (B, \circ) with values in $(I,+)$ wrt σ if

$$
\begin{aligned}
& \sigma_{c}(\theta(a, b))+\theta(a \circ b, c)=\theta(a, b \circ c)+\theta(b, c) \\
& \theta(b, 0)=\theta(0, b)=0
\end{aligned}
$$

$\tau: B \times B \rightarrow I$ is a 2-cocycle form (B, \circ) with values in $(I,+)$ if τ is a 2-cocycle wrt the trivial action σ (i.e. $\sigma_{b}=\mathrm{id}$).

An extension system

- $(B,+, \circ)$ - a skew brace
- $(I,+, \circ)$ - a trivial brace (i.e. $(I,+)$ abelian and $a+b=a \circ b$)
- $\nu:(B, \circ) \rightarrow \operatorname{Aut}(I,+)$ - a left action
- $\tau: B \times B \rightarrow I$ - a 2-cocycle form $(B,+)$ with values in $(I,+)$
- $\sigma:(B, \circ) \rightarrow \operatorname{Aut}(I,+)$ - a right action
- $\theta: B \times B \rightarrow I$ - a 2-cocycle form (B, \circ) with values in $(I,+)$ wrt σ
$(B, I, \nu, \tau, \theta, \sigma)$ is a extension system of B by $I($ via ν, τ, θ and $\sigma)$.

A compatible extension system

An extension system $(B, I, \nu, \tau, \theta, \sigma)$ is compatible if

$$
\begin{gathered}
\nu_{a+b} \sigma_{a+b}(i)+i=\nu_{a} \sigma_{a}(i)+\nu_{b} \sigma_{b}(i) \\
\nu_{a \circ(b+c)}(\theta(a, b+c))+\nu_{a}(\tau(b, c)) \\
=\nu_{a \circ b}(\theta(a, b))+\nu_{a \circ c}(\theta(a, c))-\tau(a,-a+b \circ c)+\tau(a \circ b,-a+b \circ c)
\end{gathered}
$$

Ideal extensions for skew braces by a trivial brace

- $(B, I, \nu, \tau, \theta, \sigma)$ - a compatible extension system

Define on $B \times I$

$$
\begin{aligned}
(a, i)+(b, j) & =(a+b, i+j+\tau(a, b)) \\
(a, i) \circ(b, j) & =\left(a \circ b, \nu_{a \circ b}\left(\sigma_{b} \nu_{a^{-}}(i)\right)+\nu_{a}(j)+\nu_{a \circ b}(\theta(a, b))\right) .
\end{aligned}
$$

Then $(B \times I,+, \circ)$ is a skew brace, the ideal extension of B by I.

- $\{0\} \times I \cong I$
- $\{0\} \times I$ is an ideal on $B \times I$
- $(B \times I) /(\{0\} \times I) \cong B$
- $\{0\} \times I \subseteq Z(B \times I,+)$
- B - a skew brace
- I-a central trivial ideal of B
- Put $\bar{B}=B / I$

Then there exists a compatible extension system of \bar{B} by I such that B is isomorphic to the ideal extension of \bar{B} by I.

- B - a skew brace
- I-a central trivial ideal of B
- Put $\bar{B}=B / I$

Then there exists a compatible extension system of \bar{B} by I such that B is isomorphic to the ideal extension of \bar{B} by I.
i.e.

- $I \subseteq Z(B,+)$
- I is a trivial brace

Example

- R - a radical ring
- I the trivial brace with additive group $(R,+)$
- $\alpha: R \rightarrow R$ - an homomoprphism of the additive group $(R,+)$
- define
- $\tau(a, b)=\alpha(a) b$
- $\theta(a, b)=0$
- $\sigma_{b}=\nu_{b}=\mathrm{id}$

Then $(R, I, \nu, \tau, \theta, \sigma)$ is a compatible extension system.

$$
\begin{aligned}
(a, i)+(b, j) & =(a+b, i+j+\alpha(a) b) \\
(a, i) \circ(b, j) & =(a \circ b, i+j)
\end{aligned}
$$

$\begin{aligned}(R \times I,+, \circ) \text { is a brace } & \Longleftrightarrow \alpha(a) b=\alpha(b) a \\ & \Longleftrightarrow \tau(a, b)=\tau(b, a)\end{aligned}$

Ideal extensions for braces by a trivial brace

- $(B,+),(I,+)-$ abelian groups
- $\tau: B \times B \rightarrow I$ - a 2-cocycle
τ is symmetric if

$$
\tau(a, b)=\tau(b, a)
$$

- B - a brace
- I-a trivial brace
- $(B, I, \nu, \tau, \theta, \sigma)$ - a compatible extension system with τ symmetric
then the ideal extension of B by $/$ is a brace.

Ideal extensions for braces by a trivial brace

- $(B,+),(I,+)-$ abelian groups
- $\tau: B \times B \rightarrow I$ - a 2-cocycle
τ is symmetric if

$$
\tau(a, b)=\tau(b, a)
$$

- B - a brace
- I-a trivial brace
- ($B, I, \nu, \tau, \theta, \sigma)$ - a compatible extension system with τ symmetric
then the ideal extension of B by I is a brace.

Skew braces with non-trivial annihilator

Examples of central trivial ideals

B - skew brace

- the socle

$$
\operatorname{Soc}(B):=\{a \mid a \in B, \forall b \in B, a \circ b=a+b, a+b=b+a\}
$$

- the annihilator

$$
\operatorname{Ann}(B)=\operatorname{Soc}(B) \cap \mathrm{Z}(B, \circ)
$$

Hochschild compatible extension system

- $(B,+, \circ)$ - skew brace
- $(I,+, \circ)$ - an trivial brace

A Hochschild compatible extension system of B with values in l is

- compatible extension system ($B, I, \nu, \tau, \theta, \sigma$)
- ν, σ trivial actions.

The "compatibility conditions" $\nu_{a}+b \sigma_{a+b}(i)+i=\nu_{a} \sigma_{a}(i)+\nu_{b} \sigma_{b}(i)$

Hochschild compatible extension system

- $(B,+, \circ)$ - skew brace
- $(I,+, \circ)$ - an trivial brace

A Hochschild compatible extension system of B with values in l is

- compatible extension system ($B, I, \nu, \tau, \theta, \sigma$)
- ν, σ trivial actions.

The "compatibility conditions"

$$
\nu_{a+b} \sigma_{a+b}(i)+i=\nu_{a} \sigma_{a}(i)+\nu_{b} \sigma_{b}(i)
$$

$$
\begin{aligned}
& \nu_{a \circ(b+c)}(\theta(a, b+c))+\nu_{a}(\tau(b, c)) \\
& \quad=\nu_{a \circ b}(\theta(a, b))+\nu_{a \circ c}(\theta(a, c))-\tau(a,-a+b \circ c)+\tau(a \circ b,-a+b \circ c)
\end{aligned}
$$

Hochschild compatible extension system

- $(B,+, \circ)$ - skew brace
- $(I,+, \circ)$ - an trivial brace

A Hochschild compatible extension system of B with values in l is

- compatible extension system ($B, I, \nu, \tau, \theta, \sigma$)
- ν, σ trivial actions.

The "compatibility conditions"

$$
\nu_{a+b} \sigma_{a+b}(i)+i=\nu_{a} \sigma_{a}(i)+\nu_{b} \sigma_{b}(i) \longleftarrow \text { trivially holds }
$$

$$
\begin{aligned}
& \nu_{a \circ(b+c)}(\theta(a, b+c))+\nu_{a}(\tau(b, c)) \\
& \quad=\nu_{a \circ b}(\theta(a, b))+\nu_{a \circ c}(\theta(a, c))-\tau(a,-a+b \circ c)+\tau(a \circ b,-a+b \circ c)
\end{aligned}
$$

Hochschild compatible extension system

- $(B,+, \circ)$ - skew brace
- $(I,+, \circ)$ - an trivial brace

A Hochschild compatible extension system of B with values in l is

- compatible extension system ($B, I, \nu, \tau, \theta, \sigma$)
- ν, σ trivial actions.

The "compatibility conditions"

$$
i+i=i+i
$$

$$
\begin{aligned}
& \nu_{\mathrm{a} \circ}(b+c)(\theta(a, b+c))+\nu_{a}(\tau(b, c)) \\
& \quad=\nu_{\mathrm{a} \circ}(\theta(a, b))+\nu_{\mathrm{aoc}}(\theta(a, c))-\tau(a,-a+b \circ c)+\tau(a \circ b,-a+b \circ c)
\end{aligned}
$$

Hochschild compatible extension system

- $(B,+, \circ)$ - skew brace
- $(I,+, \circ)$ - an trivial brace

A Hochschild compatible extension system of B with values in l is

- compatible extension system ($B, I, \nu, \tau, \theta, \sigma$)
- ν, σ trivial actions.

The "compatibility conditions"

$$
\begin{aligned}
& \theta(a, b+c)+\tau(b, c) \\
& \quad=\theta(a, b)+\theta(a, c)-\tau(a,-a+b \circ c)+\tau(a \circ b,-a+b \circ c)
\end{aligned}
$$

- (B, I, τ, θ) - a Hochschild compatible extension system

Define on $B \times I$

$$
\begin{aligned}
(a, i)+(b, j) & =(a+b, i+j+\tau(a, b)) \\
(a, i) \circ(b, j) & =(a \circ b, i+j+\theta(a, b))
\end{aligned}
$$

Then $(B \times I,+, \circ)$ is a skew brace, the Hochshild product of B by I.

- (B, I, τ, θ) - a Hochschild compatible extension system

Define on $B \times I$

$$
\begin{aligned}
(a, i)+(b, j) & =(a+b, i+j+\tau(a, b)) \\
(a, i) \circ(b, j) & =(a \circ b, i+j+\theta(a, b)) .
\end{aligned}
$$

Then $(B \times I,+, \circ)$ is a skew brace, the Hochshild product of B by I. Recall that for a ideal extension we have:

$$
\begin{aligned}
(a, i)+(b, j) & =(a+b, i+j+\tau(a, b)) \\
(a, i) \circ(b, j) & =\left(a \circ b, \nu_{a \circ b}\left(\sigma_{b} \nu_{a^{-}}(i)\right)+\nu_{a}(j)+\nu_{a \circ b}(\theta(a, b))\right) .
\end{aligned}
$$

Skew brace with non-trivial annihilator

- B skew brace
- $\operatorname{Ann}(B) \neq 0$
- Put
- $I=\operatorname{Ann}(B)$
- $\bar{B}=B / I$

Then

- there exists a Hochschild compatible extension system (\bar{B}, I, τ, θ)
- B is isomorphic to the Hochschild product of \bar{B} by I

Sketch of the proof

- $\pi: B \rightarrow \bar{B}$ the projection map
- $s: \bar{B} \rightarrow B$ a map such that $s(\overline{0})=0$ and $\pi(s(\bar{b}))=\bar{b}$
- $\tau: \bar{B} \times \bar{B} \rightarrow I$ defined by

$$
(\bar{a}, \bar{b})=s(\bar{a})+s(\bar{b})-s(\bar{a}+\bar{b})
$$

is a 2-cocycle form $(\bar{B},+)$ with values in $(I,+)$

- $\theta: \bar{B} \times \bar{B} \rightarrow I$ defined by

$$
\theta(\bar{a}, \bar{b})=(s(\bar{a} \circ \bar{b}))^{-} \circ s(\bar{a}) \circ s(\bar{b})
$$

is a 2-cocycle form (\bar{B}, \circ) with values in $(I,+)$
Then

- $(\bar{B}, I, \tau, \theta)$ is a Hochschild compatible extension system
- B is isomorphic to the Hochschild product of \bar{B} by I

Holomorph of a group

- $(B,+)$ - a group

The holomorph of B is the group $\operatorname{Hol}(B,+):=B \times \operatorname{Aut}(B)$ with the product

$$
(a, \alpha)(b, \beta):=(a+\alpha(b), \alpha \beta)
$$

$\rightarrow \mathrm{pr}_{1}: \mathrm{Hol}(B) \rightarrow B,(a, \alpha) \mapsto a$ be the first projection Any $N \leq \operatorname{Hol}(B)$ acts on B for all $(a, \alpha) \in N$ and $x \in B$ via

$$
(a, \alpha) \cdot x=\operatorname{pr}_{1}\left((a, \alpha)\left(x, \operatorname{id}_{B}\right)\right)=a+\alpha(x) .
$$

Holomorph of a group

- $(B,+)$ - a group

The holomorph of B is the $\operatorname{group} \operatorname{Hol}(B,+):=B \times \operatorname{Aut}(B)$ with the product

$$
(a, \alpha)(b, \beta):=(a+\alpha(b), \alpha \beta)
$$

$-\mathrm{pr}_{1}: \operatorname{Hol}(B) \rightarrow B,(a, \alpha) \mapsto a$ be the first projection
Any $N \leq \operatorname{Hol}(B)$ acts on B for all $(a, \alpha) \in N$ and $x \in B$ via

$$
(a, \alpha) \cdot x=\operatorname{pr}_{1}\left((a, \alpha)\left(x, \operatorname{id}_{B}\right)\right)=a+\alpha(x) .
$$

Regular subgroups

- B - a group
- $\mathrm{Hol}(B,+)$ - the holomorph of B
- $N \leq \operatorname{Hol}(B)$
N is regular if for all $a, b \in B$ there exists a unique $(x, \chi) \in N$ s.t.

$$
(x, \chi) \cdot a=b
$$

E.g. $N=\{(a, \mathrm{id}) \mid a \in B\}$ is a regular subgroup.

Regular subgroups

- B - a group
- $\mathrm{Hol}(B,+)$ - the holomorph of B
- $N \leq \operatorname{Hol}(B)$
N is regular if for all $a, b \in B$ there exists a unique $(x, \chi) \in N$ s.t.

$$
(x, \chi) \cdot a=b
$$

E.g. $N=\{(a, \mathrm{id}) \mid a \in B\}$ is a regular subgroup.

Skew braces and regular subgroups of $\operatorname{Hol}(B,+)$

- $(B,+)$ - a group
- $\mathcal{S B}$ - all skew braces with additive group $(B,+)$
- \mathcal{R} - all regular subgroups of $\operatorname{Hol}(B,+)$

It holds that

- If $B^{\circ}=(B,+, 0) \in \mathcal{S B}$, then $N_{B^{\circ}}:=\left\{\left(a, \lambda_{a}\right) \mid a \in B\right\} \in \mathcal{R}$.
- The map $f: \mathcal{S B} \rightarrow \mathcal{R}, B^{\circ} \mapsto N_{B^{\circ}}$ is a bijection.

Moreover isomorphic skew \longleftrightarrow Regular subgroups of $\mathrm{Hol}(B)$ left braces conjugated under the action of Aut (B).

Thanks for your attention!

